目录 必做题 plotData.m sigmoid.m costFunction.m predict.m costFunctionReg.m Coursera课程地址 本周作业的官方指导文件可以从这里下载pdf – — 1. plotData function plotData(X, y) %PLOTDATA Plots the data points X and y into a new figure % PLOTDATA(x,y) plots the data points with + for the positive examples % and o for the negative examples. X is assumed to be a Mx2 matrix. % Create New Figure figure; hold on; % ====================== YOUR CODE HERE ====================== % Instructions: Plot the positive and negative examples on a % 2D plot, using the option 'k+' for the positive % examples and 'ko' for the negative examples. % pos = find(y==1);neg = find(y==0); plot(X(pos,1), X(pos,2), "k+", "LineWidth", 2, "MarkerSize", 7); plot(X(neg,1), X(neg,2), "ko", "LineWidth", 2, "MarkerSize", 7); % ========================================================================= hold off; end 2. sigmoid function g = sigmoid(z) %SIGMOID Compute sigmoid function % g = SIGMOID(z) computes the sigmoid of z. % You need to return the following variables correctly g = zeros(size(z)); % ====================== YOUR CODE HERE ====================== % Instructions: Compute the sigmoid of each value of z (z can be a matrix, % vector or scalar). g = 1./(1+exp(-z)); % ============================================================= end 3. costFunction function [J, grad] = costFunction(theta, X, y) %COSTFUNCTION Compute cost and gradient for logistic regression % J = COSTFUNCTION(theta, X, y) computes the cost of using theta as the % parameter for logistic regression and the gradient of the cost % w.r.t. to the parameters. % Initialize some useful values m = length(y); % number of training examples % You need to return the following variables correctly J = 0; grad = zeros(size(theta)); % ====================== YOUR CODE HERE ====================== % Instructions: Compute the cost of a particular choice of theta. % You should set J to the cost. % Compute the partial derivatives and set grad to the partial % derivatives of the cost w.r.t. each parameter in theta % % Note: grad should have the same dimensions as theta % J = (-y'*log(sigmoid(X*theta))-(1-y)'*log(1-sigmoid(X*theta)))/m; grad = (X'*(sigmoid(X*theta)-y))/m; % ============================================================= end 4. predict function p = predict(theta, X) %PREDICT Predict whether the label is 0 or 1 using learned logistic %regression parameters theta % p = PREDICT(theta, X) computes the predictions for X using a % threshold at 0.5 (i.e., if sigmoid(theta'*x) >= 0.5, predict 1) m = size(X, 1); % Number of training examples % You need to return the following variables correctly p = zeros(m, 1); % ====================== YOUR CODE HERE ====================== % Instructions: Complete the following code to make predictions using % your learned logistic regression parameters. % You should set p to a vector of 0's and 1's % pos = find(sigmoid(X*theta) >= 0.5); neg = find(sigmoid(X*theta) < 0.5); p(pos) = 1; p(neg) = 0; % ========================================================================= end 5. costFunctionReg function [J, grad] = costFunctionReg(theta, X, y, lambda) %COSTFUNCTIONREG Compute cost and gradient for logistic regression with regularization % J = COSTFUNCTIONREG(theta, X, y, lambda) computes the cost of using % theta as the parameter for regularized logistic regression and the % gradient of the cost w.r.t. to the parameters. % Initialize some useful values m = length(y); % number of training examples % You need to return the following variables correctly J = 0; grad = zeros(size(theta)); % ====================== YOUR CODE HERE ====================== % Instructions: Compute the cost of a particular choice of theta. % You should set J to the cost. % Compute the partial derivatives and set grad to the partial % derivatives of the cost w.r.t. each parameter in theta J = (-y'*log(sigmoid(X*theta))-(1-y)'*log(1-sigmoid(X*theta)))/m + lambda/m/2*theta(2:size(theta))'*theta(2:size(theta)); grad = (X'*(sigmoid(X*theta)-y))/m + lambda/m*theta; grad(1) = X(:,1)'*(sigmoid(X*theta)-y)/m; % ============================================================= end Previous Coursera《机器学习》(吴恩达)编程作业第二周(ex1) Next Coursera《机器学习》(吴恩达)编程作业第四周(ex3) CATALOG FEATURED TAGS iOS ubuntu CUDA TensorFlow 深度学习 CNN 机器学习 MATLAB Keras 图像处理 视频处理 Action Recognition LSTM Object detection FRIENDS WY 简书·BY Apple Apple Developer