目录 必做题 sigmoidGradient.m - Compute the gradient of the sigmoid function randInitializeWeights.m - Randomly initialize weights nnCostFunction.m - Neural network cost function Coursera课程地址 本周作业的官方指导文件可以从这里下载pdf – — 1. sigmoidGradient function g = sigmoidGradient(z) %SIGMOIDGRADIENT returns the gradient of the sigmoid function %evaluated at z % g = SIGMOIDGRADIENT(z) computes the gradient of the sigmoid function % evaluated at z. This should work regardless if z is a matrix or a % vector. In particular, if z is a vector or matrix, you should return % the gradient for each element. g = zeros(size(z)); % ====================== YOUR CODE HERE ====================== % Instructions: Compute the gradient of the sigmoid function evaluated at % each value of z (z can be a matrix, vector or scalar). gz = 1./(1+exp(-z)); g = gz.*(1-gz); % ============================================================= end 2. randInitializeWeights function W = randInitializeWeights(L_in, L_out) %RANDINITIALIZEWEIGHTS Randomly initialize the weights of a layer with L_in %incoming connections and L_out outgoing connections % W = RANDINITIALIZEWEIGHTS(L_in, L_out) randomly initializes the weights % of a layer with L_in incoming connections and L_out outgoing % connections. % % Note that W should be set to a matrix of size(L_out, 1 + L_in) as % the first column of W handles the "bias" terms % % You need to return the following variables correctly W = zeros(L_out, 1 + L_in); % ====================== YOUR CODE HERE ====================== % Instructions: Initialize W randomly so that we break the symmetry while % training the neural network. % % Note: The first column of W corresponds to the parameters for the bias unit % % Randomly initialize the weights to small values epsilon_init = 0.12; W = rand(L_out, 1 + L_in) * 2 * epsilon_init - epsilon_init; % ========================================================================= end 3. nnCostFunction function [J grad] = nnCostFunction(nn_params, ... input_layer_size, ... hidden_layer_size, ... num_labels, ... X, y, lambda) %NNCOSTFUNCTION Implements the neural network cost function for a two layer %neural network which performs classification % [J grad] = NNCOSTFUNCTON(nn_params, hidden_layer_size, num_labels, ... % X, y, lambda) computes the cost and gradient of the neural network. The % parameters for the neural network are "unrolled" into the vector % nn_params and need to be converted back into the weight matrices. % % The returned parameter grad should be a "unrolled" vector of the % partial derivatives of the neural network. % % Reshape nn_params back into the parameters Theta1 and Theta2, the weight matrices % for our 2 layer neural network Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), ... hidden_layer_size, (input_layer_size + 1)); Theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size + 1))):end), ... num_labels, (hidden_layer_size + 1)); % Setup some useful variables m = size(X, 1); % You need to return the following variables correctly J = 0; Theta1_grad = zeros(size(Theta1)); Theta2_grad = zeros(size(Theta2)); % ====================== YOUR CODE HERE ====================== % Instructions: You should complete the code by working through the % following parts. % % Part 1: Feedforward the neural network and return the cost in the % variable J. After implementing Part 1, you can verify that your % cost function computation is correct by verifying the cost % computed in ex4.m % % Part 2: Implement the backpropagation algorithm to compute the gradients % Theta1_grad and Theta2_grad. You should return the partial derivatives of % the cost function with respect to Theta1 and Theta2 in Theta1_grad and % Theta2_grad, respectively. After implementing Part 2, you can check % that your implementation is correct by running checkNNGradients % % Note: The vector y passed into the function is a vector of labels % containing values from 1..K. You need to map this vector into a % binary vector of 1's and 0's to be used with the neural network % cost function. % % Hint: We recommend implementing backpropagation using a for-loop % over the training examples if you are implementing it for the % first time. % % Part 3: Implement regularization with the cost function and gradients. % % Hint: You can implement this around the code for % backpropagation. That is, you can compute the gradients for % the regularization separately and then add them to Theta1_grad % and Theta2_grad from Part 2. % X=[ones(m,1) X]; hx = sigmoid([ones(m,1) sigmoid(X*Theta1')]*Theta2'); yk=zeros(m,num_labels); for i=1:m yk(i,y(i))=1; end J = sum( sum(-log(hx).*yk) - sum(log(1-hx).*(1-yk)) )/m + ( sum(sum(Theta1(:,2:end).^2))+sum(sum(Theta2(:,2:end).^2)) )*lambda/(2*m) ; %BackPropagation for ex=1:m a1=X(ex,:)'; %first example data 401*1 z2=Theta1*a1; %25*1 a2=[1;sigmoid(z2)]; %26*1 z3=Theta2*a2; %10*1 a3=sigmoid(z3); y=yk(ex,:); %1*10 delta3=a3-y'; %10*1 delta2=Theta2(:,2:end)'*delta3.*sigmoidGradient(z2); %25*1 delta1===0 Theta1_grad=Theta1_grad+delta2*a1'; Theta2_grad=Theta2_grad+delta3*a2'; end Theta1(:,1)=0; Theta2(:,1)=0; %Regulization Theta1_grad=Theta1_grad./m + lambda/m*Theta1 ; Theta2_grad=Theta2_grad./m + lambda/m*Theta2 ; % ------------------------------------------------------------- % ========================================================================= % Unroll gradients grad = [Theta1_grad(:) ; Theta2_grad(:)]; end Previous Coursera《机器学习》(吴恩达)编程作业第四周(ex3) Next Coursera《机器学习》(吴恩达)编程作业第六周(ex5) CATALOG FEATURED TAGS iOS ubuntu CUDA TensorFlow 深度学习 CNN 机器学习 MATLAB Keras 图像处理 视频处理 Action Recognition LSTM Object detection FRIENDS WY 简书·BY Apple Apple Developer