目录 必做题 estimateGaussian.m - Estimate the parameters of a Gaussian distribution with a diagonal covariance matrix selectThreshold.m - Find a threshold for anomaly detection cofiCostFunc.m - Implement the cost function for collaborative filtering Coursera课程地址 本周作业的官方指导文件可以从这里下载pdf – — 1. estimateGaussian function [mu sigma2] = estimateGaussian(X) %ESTIMATEGAUSSIAN This function estimates the parameters of a %Gaussian distribution using the data in X % [mu sigma2] = estimateGaussian(X), % The input X is the dataset with each n-dimensional data point in one row % The output is an n-dimensional vector mu, the mean of the data set % and the variances sigma^2, an n x 1 vector % % Useful variables [m, n] = size(X); % You should return these values correctly mu = zeros(n, 1); sigma2 = zeros(n, 1); % ====================== YOUR CODE HERE ====================== % Instructions: Compute the mean of the data and the variances % In particular, mu(i) should contain the mean of % the data for the i-th feature and sigma2(i) % should contain variance of the i-th feature. % mu = mean(X)'; sigma2 = (var(X,1))'; % ============================================================= end 2. selectThreshold function [bestEpsilon bestF1] = selectThreshold(yval, pval) %SELECTTHRESHOLD Find the best threshold (epsilon) to use for selecting %outliers % [bestEpsilon bestF1] = SELECTTHRESHOLD(yval, pval) finds the best % threshold to use for selecting outliers based on the results from a % validation set (pval) and the ground truth (yval). % bestEpsilon = 0; bestF1 = 0; F1 = 0; stepsize = (max(pval) - min(pval)) / 1000; for epsilon = min(pval):stepsize:max(pval) % ====================== YOUR CODE HERE ====================== % Instructions: Compute the F1 score of choosing epsilon as the % threshold and place the value in F1. The code at the % end of the loop will compare the F1 score for this % choice of epsilon and set it to be the best epsilon if % it is better than the current choice of epsilon. % % Note: You can use predictions = (pval < epsilon) to get a binary vector % of 0's and 1's of the outlier predictions predictions = (pval < epsilon); TP = sum((predictions==1)&(yval==1)); FP = sum((predictions==1)&(yval==0)); FN = sum((predictions==0)&(yval==1)); % I'm going to add the 'eps' just in order to eliminate the waring of 'dividion by zero' in MATLAB % 在除数后面加eps以消除‘division by zero’的warning prec = TP/(TP+FP+eps); rec = TP/(TP+FN+eps); F1=2*prec*rec/(prec+rec+eps); % ============================================================= if F1 > bestF1 bestF1 = F1; bestEpsilon = epsilon; end end end 3. cofiCostFunc function [J, grad] = cofiCostFunc(params, Y, R, num_users, num_movies, ... num_features, lambda) %COFICOSTFUNC Collaborative filtering cost function % [J, grad] = COFICOSTFUNC(params, Y, R, num_users, num_movies, ... % num_features, lambda) returns the cost and gradient for the % collaborative filtering problem. % % Unfold the U and W matrices from params X = reshape(params(1:num_movies*num_features), num_movies, num_features); Theta = reshape(params(num_movies*num_features+1:end), ... num_users, num_features); % You need to return the following values correctly J = 0; X_grad = zeros(size(X)); Theta_grad = zeros(size(Theta)); % ====================== YOUR CODE HERE ====================== % Instructions: Compute the cost function and gradient for collaborative % filtering. Concretely, you should first implement the cost % function (without regularization) and make sure it is % matches our costs. After that, you should implement the % gradient and use the checkCostFunction routine to check % that the gradient is correct. Finally, you should implement % regularization. % % Notes: X - num_movies x num_features matrix of movie features % Theta - num_users x num_features matrix of user features % Y - num_movies x num_users matrix of user ratings of movies % R - num_movies x num_users matrix, where R(i, j) = 1 if the % i-th movie was rated by the j-th user % % You should set the following variables correctly: % % X_grad - num_movies x num_features matrix, containing the % partial derivatives w.r.t. to each element of X % Theta_grad - num_users x num_features matrix, containing the % partial derivatives w.r.t. to each element of Theta % J = 1/2 * sum(sum(((X * Theta') .* R - Y .* R) .^ 2)) + lambda/2 * sum(sum(Theta .^ 2)) + lambda/2 * sum(sum(X .^ 2)); X_grad = ((X * Theta') .* R - Y .* R) * Theta + lambda .* X; Theta_grad = ((X * Theta') .* R - Y .* R)' * X + lambda .* Theta; % ============================================================= grad = [X_grad(:); Theta_grad(:)]; end Previous Coursera《机器学习》(吴恩达)编程作业第八周(ex7) Next Coursera《Introduction to TensorFlow》第一周测验 CATALOG FEATURED TAGS iOS ubuntu CUDA TensorFlow 深度学习 CNN 机器学习 MATLAB Keras 图像处理 视频处理 Action Recognition LSTM Object detection FRIENDS WY 简书·BY Apple Apple Developer